CONTOTRANS

APP3 – Composite Prepreg

Translator Partner:

IFAM

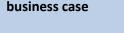
End User Partner:

Business Case

In terms of the business case, the following factors were highlighted as the most important:

- Market, regulatory and safety requirements drive the transition towards non-toxic, low \succ environmental impact solutions for composite prepregs (fabrics pre-impregnated with resin)
- Innovative prepregs provide a potential solution
- PFA: fire retardant, eco friendly alternative to phenolic resins

6) Translation of the modelling results to information that is understandable and usable by the client


1) Good understanding of the 2) Good understanding of the 3) Analysis of the experimental 4) Translation to (preferably industrial case (and modelling) data available more than one) workflow(s) within the client

5) Propose to the client modelling executor(s) and strategy for model validation

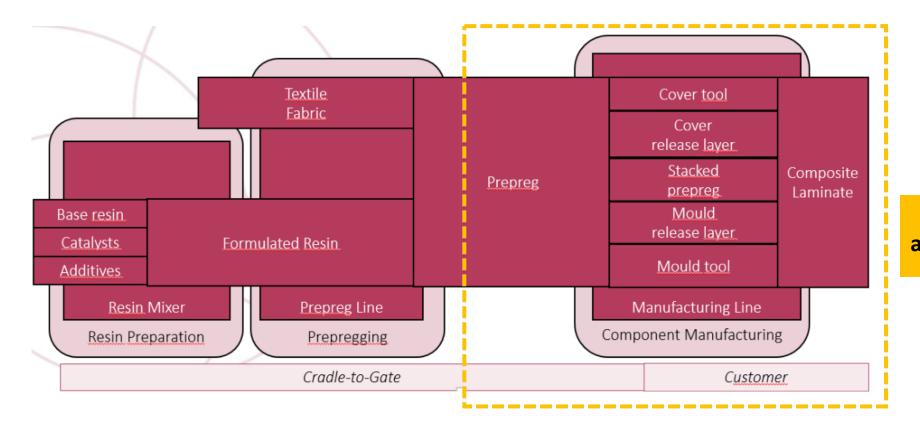
IONTOTRANS

2

Business Case

Aims of the innovation challenge:

- Improve understanding and control of process
- Improve quality of end products
- Reduce development time and costs
- Create model-based approach for future product developments

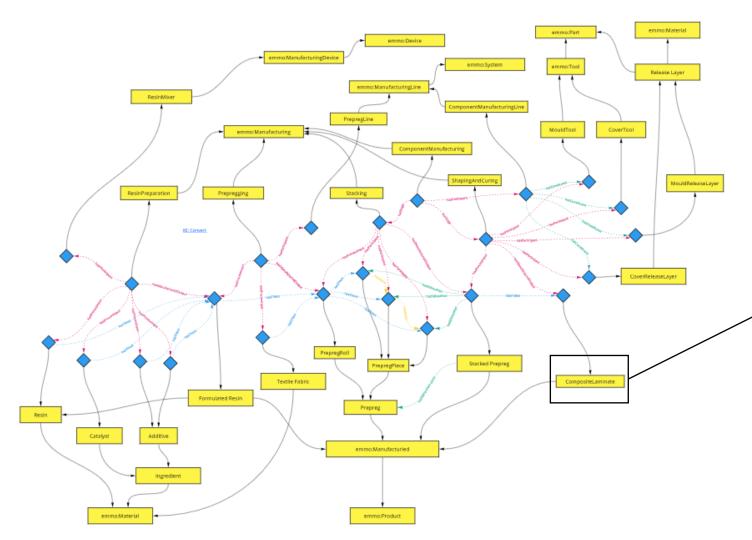


1) Good understanding of the business case	2) Good understanding of the industrial case	3) Analysis of the experimental (and modelling) data available within the client	4) Translation to (preferably more than one) workflow(s)	5) Propose to the client modelling executor(s) and strategy for model validation	6) Translation of the modelling results to information that is understandable and usable by
					the client

APP4 Composite Prepreg (CompEvo)

Industrial Case

translator acting as a "surrogate" customer


1) Good understanding of the business case 2) Good industria

2) Good understanding of the industrial case 3) Analysis of the experimental (and modelling) data available within the client 4) Translation to (preferably more than one) workflow(s)

5) Propose to the client modelling executor(s) and strategy for model validation 6) Translation of the modelling results to information that is understandable and usable by the client

Second OntoTrans Open Workshop, 07.09.2022, Hybrid

EMMO Compliant Application Ontology

Full EMMO description of industrial process

.. including properties

Property Names	Property Description (semantics)	Data Description (symbolic)				Possible Interpreters				Source Data File
		Data Type	Data Range	Units	Reference Physical Quantity	Measured by	Modelled by	Assigned by	Other	Format
Composite Laminate Visual Surface finish	Using a (set of) specimen illumination settings, the appearance is compared with the appearance of a specified set of (reference) specimens	Set of strings	string igrade, string like "satisfactorily low", "unexpectedly high")	classification (high, low density of defects)	na	a.s.	as.	CompEvo, Client (of CompEvo)		User Input (GUI)
Composite Laminate Surface-region porosity (quantitative)	Based on a light microscopy image of the smoother surface (i.e. the one visible to a user) of the composite laminate, the apparent surface area fraction occupied by pores is evaluated.	real scalar	30,1[(Surface) Area % (unitless)	contrast (in an image)	CompEvo, IFAM, Client (of CompEvo)	FAM (measured and evaluated data are input for data-based model, i.e. Workflow 28, DD-PMPA-M.)	na.		.csv from image assessment DTE
Composite Laminate Bulk porosity (quantitative)	After performing a cross-cut perpendicular to the specimen surface, based on a light microscopy image, the apparent surface area fraction occupied by pores is evaluated	real scalar	30.1[(Surface) Area % (unitless)	area ratio	IFAM	FAM (Workflow 1A M2C-PA-M; Workflow 28 DD-PMPA-M)	n.a		.csv from image assessment from th OTE
Porosity inferred from density	After cutting a text sample is an of the specimen to be tested, growinetric and volumetric findings are used to calculate an overlaps density that is compared to the density of a qualited indexessation order 0.0.2 specimes	real scalar	30,1[kg.m-3 /kg.m-3	mass ratio	FAM	IFAM (Workflow 1A M2C-PA-M; Workflow 28 DD-PMPA-M)	n.a		User Input (GUI) based on gravimetri assessment
Tensile strength	Maximum value of the stress-strain curve under tensile stress	Real scalar)0. inf(MPa (kg.m-1s-2)	stress resp. pressure (force per area at a maximum bearable loading)	CompEvo	IFAM (Workflow 1A M2C-PA-M; Workflow 28 DD-PMPA-M)	n.a.		.csv (respectively: gained from Adobe .pdf)
Tensile modulus	Tangent of the stress-strain curve under tensile stress	Real scalar	30,imt	MPa (kg.m-1s-2)	mechanical stiffness	CompEvo, IFAM	IFAM (Workflow 1A M2C-PA-M; Workflow 2B DD-PMPA-M)	n.a		.csv (respectively: gained from Adobe .pdf)
Flexural strength	Maximum value of the stress-strain curve under flexural stress	Real scalar	j0,imt	MPa (kg.m-1s-2)	mechanical stress	0.5	IFAM (Workflow 1A M2C-PA-M; Workflow 28 DD-PMPA-M)	CompEvo Product Data Sheet		.csv (respectively: gained from Adobe .pdf)
Flexual modulus	Tangent of the stress-strain curve under flexural stress	Real scalar	30.inf[MPa (kg.m-1s-2)	mechanical stiffness	0.5	FAM (Workflow 1A M2C-PA-M; Workflow 2B DD-PMPA-M)	CompEvo Product Data Sheet		.csv (respectively: gained from Adobe .pdf)
Elongation at break	ratio between increased length and initial length after breakage	Real scalar	j0,imf[% (unitless)	length ratio	CompEvo, IFAM	FAM (Workflow 1A M2C-PA-M; Workflow 2B DD-PMPA-M)	n.a		.csv (respectively: gained from Adobe .pdf)
Storage modulus	The storage modulus in viscoelastic materials measure the stored energy representing the elastic portion	Real scalar	30,imt[MPa	mechanical stress	CompEvo, IFAM	FAM (Workflow 1A M2C-PA-M; Workflow 28 DD-PMPA-M)	n.a		.csv (respectively: gained from Adobe .pdf)
interlaminar shear strength	Mechanical property associated with the matrix-fibre interaction	Real scalar	30,ant	MPa	mechanical stress	CompEvo, IFAM	FAM (Workflow 1A M2C-PA-M; Workflow 2B DD-PMPA-M)	n.a		.csv (respectively: gained from Adobe .pdf)
Glass transition temperature	Temperature for transition from glassy state into a viscous one	Real scalar	30,imt	°C	temperature	CompEvo, IFAM	IFAM (Workflow 1A M2C-PA-M; Workflow 2B DD-PMPA-M)	n.a		User Input (GUI) from from DSC or DMA measurement
Fibre volume content	Ratio between the volume of fibre and the volume of the composite laminate	Real scalar	30.1[95	volume ratio	CompEvo, IFAM	FAM (Workflow 1A M2C-PA-M; Workflow 28 DD-PMPA-M)	n.a		User Input (GUI) from image assessment/density inferred

Innovation Challenge

APP4 interface designed to take into account both following problems:

Case 1:

- Input: new process parameters (temperature, pressure, geometry)
- Output: expected mechanical properties

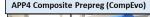
Case 2

6

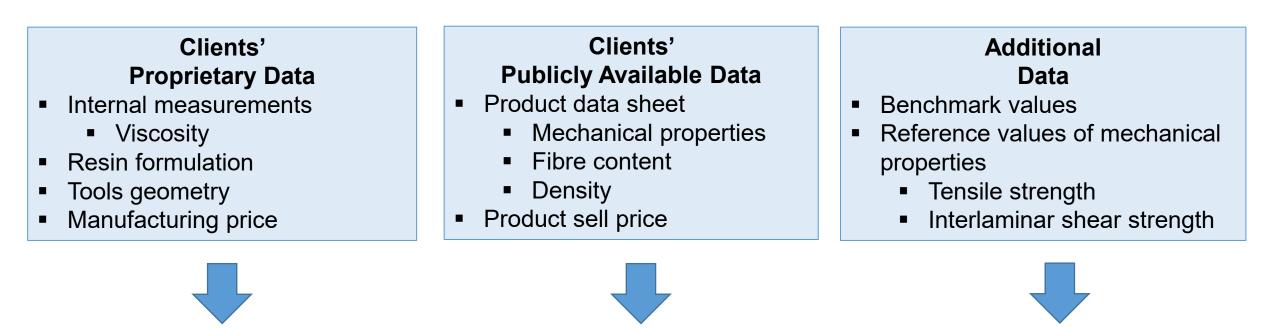
- Input: required mechanical properties
- Output: suitable process parameters

KPIs (measurable)

- Time-to-market (months)
- Number of tries (#)
- Mechanical performance
 - Interlaminar shear strength (MPa)
 - Tensile strength (MPa)



IONTOTRANS


APP4 Composite Prepreg (CompEvo)

IONTOTRANS

Data and Metadata Curation

Data, data format, metadata

1) Good understanding of the 2) Good understanding of the 3) Analysis of the experimental 4) Translation to (preferably 5) Propose to the client 6) Translation of the modelling industrial case (and modelling) data available more than one) workflow(s) modelling executor(s) and results to information that is business case within the client strategy for model validation understandable and usable by the client

Second OntoTrans Open Workshop, 07.09.2022, Hybrid

Process Model Weight-temperature Raw Output 1 **TGA-Measurement** input profile stands for Raw Output 2 **Resin content** KPI 1 Input 2 **Data-Driven Model** Temperature -NPUTS profile Pressure Expected profile Input 3 **FEA-Driven Model** Raw Output 3 KPI 2 ·--> **Mechanical Properties** Geometry -1) Good understanding of the 2) Good understanding of the 3) Analysis of the experimental 4) Translation to (preferably 5) Propose to the client 6) Translation of the modelling industrial case (and modelling) data available more than one) workflow(s) modelling executor(s) and results to information that is business case within the client strategy for model validation understandable and usable by the client

Second OntoTrans Open Workshop, 07.09.2022, Hybrid

IONTOTRANS

APP4 Composite Prepreg (CompEvo)

Model Validation

Simulation Manufacturing Validation

Testing

1) Good understanding of the business case

2) Good understanding of the industrial case

3) Analysis of the experimental (and modelling) data available within the client 4) Translation to (preferably more than one) workflow(s)

5) Propose to the client modelling executor(s) and strategy for model validation 6) Translation of the modelling results to information that is understandable and usable by the client

Second OntoTrans Open Workshop, 07.09.2022, Hybrid

CONTOTRANS

APP4 Composite Prepreg (CompEvo)

APP3 GUI of OTE

ONTOTRANS	Upload Data	ONTOTRANS	Results		
	Prepreg properties Type of resin Type of fibre	COMPOSITE PREPREG	Porosity Tensile Strength 1.0% 1000 MPa		
Select Workflow	Type of preprog Geometry of laminate Length Width Thickness Number of layers	Select Workflow	ILSS 100 MPg		
 Select your goal Upload data 	Curing profile Temperature ramp Duration Pressure Add step	 Select your goal Upload data 			
Data check	Image upload	🕢 Data check	Download Results		
5 Run model 6 Results	Select an image to upload or drop it here	Run model Rosults	Start over		
ංදුව ESS IDD Data analysis		eg ess 100 Data analysis			
Q Login	Back Submit	Q Login			

Tensile Modulus

APP3 ESS

×	prepregging					Q	
	ALL	PREPREGGING	TEXTILE FABRIC	FORMULATED RESIN	PREPREG ROLL		4

20 results (39 milliseconds)

Prepregging 7

Prepregging - Thing Description of Prepregging 7

Prepregging 2 Prepregging - Thing

Description of Prepregging 2

Prepregging 5 Prepregging - Thing Description of Prepregging 5

Prepregging 8

Prepregging - Thing Description of Prepreadina 8

Prepregging 7 Prepregging - Thing Description of Prepregging 7 HasInputResin: Resin 2 HasInputFabric: Fabric 5 HasManufacturingMethod: Closed Molding Laminate_length: 1567 mm Laminate_wide: 112 mm Laminate_thickness: 0.7 mm Laminate_layer_count: 17 Curing Steps: Curing Step 1, Curing Step 2 HasManufacturedOutput: Prepreg Roll 7

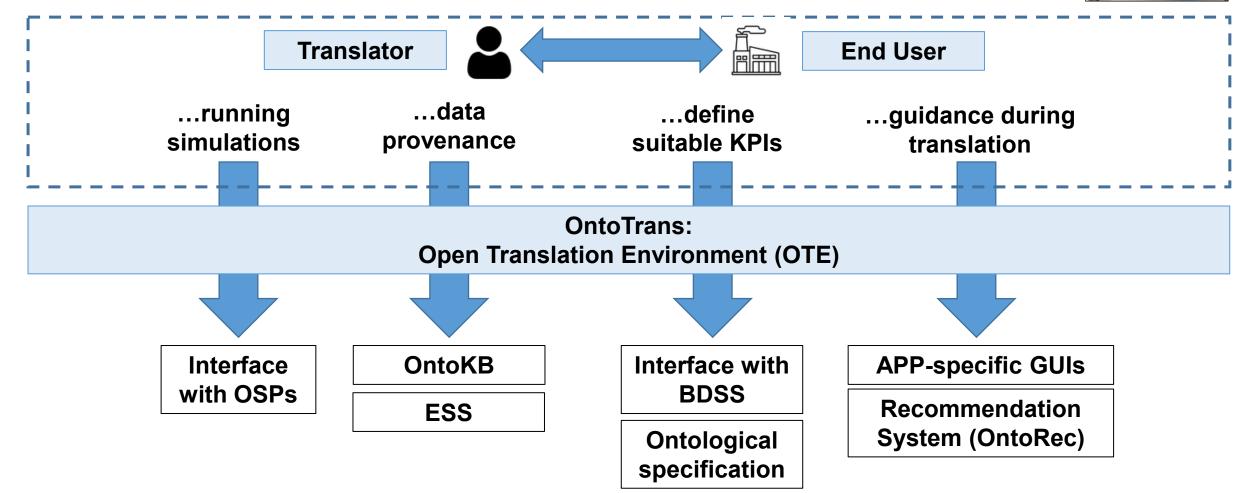
LONTOTRANS

APP4 Composite Prepreg (CompEvo)

IONTOTRANS

Advantage from OntoTrans

- > Data-driven approach allows for a faster integration of new materials/processes
- > Data-driven approach allows the prediction of composite laminate properties
- Faster response by manufacturer to customer requests
- Time-to-market can be reduced based on data-driven approach



APP4 Composite Prepreg (CompEvo)

Advantage from OntoTrans

